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Abstract The investigated method is based on an exact mathematical 
solution to the deconvolution problem of linear pharmacokinetic systems 
with a polyexponential impulse response. The accuracy of the method 
is determined only by how well the curves fitted to the intravenous and 
absorption data represent the true drug level. Consequently, the method 
enables objective evaluation of the input. It permits the user to assess 
whether discrepancies in a calculated input are due to an improper data 
representation, as judged from the fitted curves, to the inherent nature 
of the data, or to a violation of the pharmacokinetic assumptions. The 
method is compared to another method using simulated data containing 
various degrees of random noise. The accuracy of the two methods was 
not significantly different and was of the same magnitude as the noise 
level of the data. The theoretical properties of the two methods and their 
expected performance in various pharmacokinetic situations are dis- 
cussed. The method is applied to pentobarbital data from oral and in- 
travenous administrations. 

Keyphrases 0 Pharmacokinetics-linear systems, polyexponential 
impulse response, analysis of input, model-independent method 
Model-independent analysis-linear pharmacokinetic systems, 
polyexponential impulse response, analysis of input 0 Drug input-linear 
pharmacokinetic systems, polyexponential impulse response, analysis 
by model-independent method 

A previous article (1) presented the theoretical deriva- 
tion and analysis of a novel input analysis method. The 
method allows a drug input to be evaluated in the presence 
or absence of any combination of intravenous bolus input 
and infusion input. Three approaches were discussed 
evaluation of the input rate based on a separate intrave- 
nous bolus experiment and an input (absorption) experi- 
ment, evaluation based on a merged intravenous bolus and 
input experiment, and evaluation based on a merged 
infusion and input experiment. 

The present work is confined to the first approach and 
is based on an exact mathematical solution to the decon- 
volution problem of linear pharmacokinetic systems with 
a polyexponential impulse response. Several methods for 
deconvolution have been presented (2-5). The Wagner- 
Nelson method usually is limited to one-compartment 
systems (61, and the methods investigated by Benet and 
Chiang (2) were shown to be very sensitive to errors in the 
data. The numerical deconvolution method presented by 
Game1 et al. (3) did not provide satisfactory results, pos- 
sibly due to numerical ill conditioning. Cutler (5) improved 
Gamel’s approach by using orthogonal polynomials to 
avoid the problem of ill conditioning. The improved 
method seems to be the most accurate method for nu- 

merical deconvolution. It appears to be superior to the 
many model-dependent methods (6-10) because it is based 
on fewer assumptions and, therefore, is more likely to re- 
sult in a meaningful evaluation of the drug input. 

This work compares the new method with Cutler’s ap- 
proach using Cutler’s simulated test data that contain 
various degrees of random noise (4,5). 

THEORY 

Let the concentration of drug in the blood, c * ( t ) ,  following an initial 
intravenous bolus dose, q* ,  be described by a multiexponential rela- 
tionship (1): 

Let c(t) denote the drug level resulting from an unknown input of a drug 
that, in the same subject with the same linear relationship between input 
and response, results in the blood level c*(t) (Eq. 1) when an intravenous 
bolus dose, q*,  is given. It has been shown (1) that the rate of input of the 
drug then is given by: 

0%. 2) 

where pi, i = 1,2, . . ., n - 1 are the roots of the (n  - 1)th-degree poly- 
nomial: 

Q ( X )  = 2 ai fi (*. - x j )  (Eq. 3) 
i - 1  j =1  

’ # i  
and b,, u = 1,2,. . ., n -1 are obtained from: 

1 

#i  

(Eq. 4) 

Integration of f ( t )  from time zero to time t yields the cumulative amount 
of input: 
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It may be more convenient to describe the amount as a percentage of the 
dose, q ,  given, i.e.: 

1 

Consider as an example the case where the drug level after an intra- 
venous bolus dose, q* ,  is described by a two-exponential expression: 

c*(t) = aleXlt + a2eXZt (Eq. 7) 

The auxiliary parameters P1 and b l ,  according to Eqs. 3 and 4, are given 
by: 

and: 

(Eq. 9) 

so that the rate of input becomes: 

and the cumulative amount of input expressedas a percentage of the dose, 
q,  becomes: 

a1Xn + a s h  - 
(a1 + ad2 

alaz(X1- A d 2  
(alXz + azXl)(al+ ad2 

which simplifies to: 

The procedure for evaluating the input is as follows. The two-expo- 
nential expression (Eq. 7) is fitted by nonlinear regression to the intra- 
venous bolus data to estimate a l ,  a2, XI, and XZ. A suitable empirical 
function', s ( t ) ,  is fitted to the absorption data to estimate the true drug 
level, c(t). The rate and extent of absorption then are estimated according 
to Eqs. 10 and 12 using the estimates obtained for a l ,  a2, XI, X p ,  and 
4 t h  

The function s ( t )  chosen to estimate c(t) is an adaptive least-squares 
cubic spline function (12)*. This function is fitted to the data by mini- 
mizing the following expression: 

m N-1  

,= 1 i-2 
E = ,X [WiIcz - s(ti)I12 + E f@idi12 (Eq. 13) 

where wi are weights and (c i ,  tL ) ,  i = 1,2,. . ., m are the absorption data. 
This expression consists of the usual least-squares term (the first term) 
and a smoothing term that is determined automatically using statistical 

testa on errors (16). The function s ( t )  is a cubic spline with knots [I, (2, 

(3, . . ., (N and di represents the discontinuity in s " ( t )  at  ( i ,  i.e.: 

di = s"((, + 0)  - s " ' ( ( ~  - 0) (Eq. 14) 
The Bi values are weight factors used for smoothing s ( t ) .  In the fitting 
procedure, the number of knots, N, their position, and the smoothing 
weight factors, 8;. are optimized automatically so that the fitted spline 
function attempts to follow trends in the data but ignores random errors 
(16). The rate of input (Eq. 2) and the extent of input (Eq. 5 or 6) can be 
evaluated accurately without numerical integration errors3 when a cubic 
spline function, s ( t ) ,  is used to estimate c(t). 

This evaluation leads to the following expressions: 

1 

where j is the highest integer for which t 5 [, is satisfied, i.e.: 

j = B"P ( t  5 t i )  (Eq. 16) 
a n d  

1 

(Eq. 17) 

EXPERIMENTAL 
The simulated data used to test the new method consist of four sets 

of data presented by Cutler (4) and denoted as Data Sets 1-4. Each set 
consists of a set of 11 simulated unit impulse response data with random 
noise added and a set of 11 simulated input response data also containing 
noise from the same linear system. The method of analysis is model in- 
dependent. Therefore, the models used to simulate data from a linear 
system to test the method can be chosen arbitrarily. 

The models employed by Cutler to generate the test data (Table I) were 
chosen because of their resemblance to models commonly employed in 
drug release and drug absorption analyses. They can be considered, in 
the classical linear pharmacokinetic sense, as a two-compartment model 
with first-order input (Data Sets 1 and 2) and as a two-compartment 
model with dissolution rate-limited release from an intramuscular in- 
jection, where the drug release follows the well-known cube-root rela- 
tionship (17) (Data Sets 3 and 4). The results shown for Cutler's method 
(Tables 11-V) were chosen as the best results reported (5). 

Data Treatment-Polyexponential expressions of increasing degree 
n (Eq. 1) were fitted to the unit impulse response data with equal weights 
using the nonlinear regression program FUNFIT (18). A two-exponential 
expression fit the data adequately (Table VI). The cubic spline function, 
s ( t ) ,  was fitted to the input response data using the subroutine VC03A 
from the Harwell subroutine library (12). A subroutine was written that 
calls VCO3A and calculates, according to Eqs. 15 and 17, the rate and 
extent of input a t  the observation times and, optionally, at any number 
of equally spaced time points from time zero to the last observation time 
for graphical representation of the input4.The pentobarbital data used 
were those reported by Smith et al. (11). 

1 The term empirical function is used here to denote a function that describes 
empirical data in a low information situation where no specific mathematical model 
is assumed. 

References 13-15 give an introduction to the theory and applications of spline 
functions in data analysis. 

3 This is the case because analytical expressions exist for s ' j t ) ,  s " ( t ) .  and s " ( t )  
s ( t ) d t  (Eq. 17) leads to a polynomial expresslon that can be eval- 

4 Plotted using a Tektronix 4662 penplotter using a FORTRAN IV graphical 

and because 
uated exactly. 

software package written by the author. 
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Table I-Origin of the Simulated Data in Data Sets 1-4 

Random 
Rate of Amount of Noise Level b, Unit Impulse Input 

Data Set Input Input, f ( t )  % Response Data Response Data 

1 f(o)e-kt f0 (1 - e - k ' )  1 aleAlt + u f l x z t  + c c * ( t ) * f ( t )  + E 

f(o) (1 - e - k f )  10 aleA1' + azeA2t + E c * ( t ) * f ( t )  + c 

k 

k 2 

3 

~~~ ~ 

a The following notations are used (1 - x ) +  = max ( 0 , l -  r ) ;  and c * ( t ) * f ( t )  is the convolution of c* t )  andf(t), where c * J t )  = a1 exp(hlt) + a2 exp ( X z t ) .  The parameters 6 used in the simulations are: a1 = a2 = 1, Xi = -5, A2 = -1, k = 2, D = 0.6, t , ~  = 1.15, and f (0 )  = 1.2. See Ref. 4 for details. 

Table 11-Input Rates Calculated from Data Set 1 Using the New Method and the Cutler Method 

Time Exact Rate New Method Percent Difference" Cutler Method Percent Differencea 

0.1 
0.2 
0.3 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 

0.9825 
0.8044 
0.6586 
0.5392 
0.3614 
0.2423 
0.1624 
0.1089 
0.0730 
0.0489 

2.0 0.0220 
Mean * 
snb 

0.9666 
0.8366 
0.6884 
0.5500 
0.3658 
0.2339 
0.1555 
0.1160 
0.0790 
0.0404 
0.0230 

-1.32 
2.68 
2.48 
0.901 
0.364 

-0.701 
-0.577 

0.598 
0.506 

-0.712 
0.083 
0.99 
0.84 

0.967 
0.810 
0.674 
0.556 
0.370 
0.240 
0.156 
0.105 
0.076 
0.057 
0.003 

-1.29 
0.467 
1.28 
1.40 
0.717 

-0.192 
-0.533 
-0.325 

0.250 
0.675 

0.79 
0.50 

-1.583 

Calculated as 100 X (calculated rate - exact rateVl.2, where 1.2 is the initial exact input rate. The mean and the standard deviation of the absolute values of the 
percent difference. 

Table 111-Input Rates Calculated from Data Set 2 Using the New Method and the Cutler Method 
~~ ~~ ~~ ~ 

Time Exact Rate New Method Percent Differencea Cutler Method Percent Difference" 

0.1 
0.2 
0.3 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 
1.6 
2.0 
Meanb 
SD 

0.9825 
0.8044 
0.6586 
0.5392 
0.3614 
0.2423 
0.1624 
0.1089 
0.0730 
0.0489 
0.0220 

0.8784 
0.8087 
0.7242 
0.6358 
0.4771 
0.3308 
0.2199 
0.1409 
0.0708 
0.0129 
0.0091 

-8.67 
0.36 
5.47 
8.05 
9.64 
7.37 
4.79 
2.67 

-0.18 
-3.00 
-1.08 

4.65 
3.46 

0.904 
0.813 
0.724 
0.639 
0.479 
0.338 
0.219 
0.125 
0.058 
0.020 
0.027 

-6.54 
0.72 
5.45 
8.32 
9.80 
7.98 
4.72 
1.34 

-1.25 
-2.41 

0.42 
4.41 
2 A5 

a Calculated as 100 X (calculated rate - exact rste)/l.2, where 1.2 is the initial exact input rate. The mean and the standard deviation of the absolute values of the 
percent difference. 

The data treatment of the pentobarbital data (Table VII) was identical 
to the treatment of the simulated data with the exception of the addi- 
tional determination of the absorption lag time. The lag time was de- 
termined by linear extrapolation using the line that agreed with the fitted 
spline function and its slope at the first observation time. The appropriate 
time transformation then was performed before the rate and extent of 
input were calculated. Although the intravenously administered pento- 
barbital was given by a 5-min infusion, it wm considered computationally 
as a bolus input because of the short infusion time relative to the ab- 
sorption time and the rate of drug elimination. 

RESULTS AND DISCUSSION 

The analysis method does not require the input of a particular linear 
or nonlinear form, nor does it assume a specific linear pharmacokinetic 
model. The method only assumes a time-invariant linearity between 
input and response and that the impulse response (intravenous bglus 
input) can be approximated adequately by a polyexponential expres- 
sion. 

The equations for the rate (Eq. 2) and the extent (Eqs. 5 and 6) of input 

are mathematically exact expressions. The accuracy with which the input 
is evaluated is determined solely by the accuracy with which c*( t )  (as 
described by ai, Xi, i = 1,2, . . ., n) and c ( t )  are estimated. Therefore, the 
accuracy of the estimation depends on the qualities of two curve fittings. 
The functional form of c * ( t )  has been established as Eq. 1 (1). The 
method estimates c * ( t )  by least-squares regression which, according to 
the central limit theorem and the Gauss-Markov theorem, can be con- 
sidered to be statistically the best estimation when no prior information 
is available about the statistical properties of the errors. Appropriate 
weighting can be applied if the variances of the errors can be estimated 
(18). 

The estimation of c ( t )  is the most difficult step. Its functional form 
is unknown in any model-independent approach. The main problem is 
to find an empirical function that can be fitted so that it follows the trend 
and the intrinsic values of the data but ignores the errors. A proper choice 
of function must be based on assumptions about the properties of the 
errors and the real behavior of c(t). The function chosen must be able, 
when fitted, to reflect and demonstrate these properties properly. The 
present method generally assumes random errors. Although it i difficult 
to make assumptions about the real behavior of c(t), it seems important 
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Table IV-Input Rates Calculated from Data Set 3 Using the New Method and the Cutler Method 

Exact Rate New Method Percent Differencea Cutler Method Percent Difference' Time 

0.1 
0.2 
0.3 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
2.0 
Mean * 
SD 

1.3048 
1.0681 
0.8551 
0.6657 
0.3580 
0.1450 
0.0266 
0 
0 
0 
0 

1.2780 
1.1080 
0.8959 
0.6839 
0.3609 
0.1312 
0.0202 
0.0011 
0.0010 
0.0008 
0.0007 

-1.71 
2.55 
2.61 
1.16 
0.19 

-0.88 
-0.41 

0.07 
0.06 
0.05 
0.04 
0.88 
1.00 

1.256 
1 .060 
0.893 
0.715 
0.356 
0.115 
0.026 
0.004 

-0.010 
0.048 

-0.526 

-3.11 
-0.51 

2.42 
3.15 

-0.13 
-1.92 
-0.04 

0.26 
-0.64 

3.07 
33.61 
4.44 
9.76 

Calculated as 100 X (calculated rate - exact rate)/(1.8/1.15), where 1.8/1.15 is the exact initial input rate. The mean and the standard deviation of the absolute 
values of the percent difference. 

Table V-Input Rates Calculated from Data Set 4 Using the New Method and the Cutler Method 

Time Exact Rate New Method Percent Difference' Cutler Method Percent Differencea 

0.1 
0.2 
0.3 
0.4 

1.3048 
1.0681 
0.8551 
0.6657 

0.6 0.3580 
0.8 0.1450 
1.0 0.0266 
1.2 0 
1.4 0 
1.6 0 
2.0 0 
Mean 
SD * 

1.1761 
1.0614 
0.9224 
0.7740 
0.4934 
0.2480 
0.0859 
0.0057 
0.0008 
O.oo00 
O.oo00 

-8.22 
-0.43 

4.30 
6.92 
8.65 
6.58 
3.79 
0.36 
0.05 
0.00 
0.00 
3.57 
3.55 

1.235 
1.058 
0.895 
0.744 
0.481 
0.270 
0.109 
0.000 

-0.059 
-0.066 

0.074 

-4.46 
-0.65 

2.55 
5.00 
7.86 
7.99 
5.26 
0.00 

-3.77 
-4.22 

4.73 
4.23 
2.51 

Calculated as loi, X (calculated rate - exact rate)/(l.8/1.15), where 1.8h.15 is the exact initial input rate. The mean and the standard deviation of the absolute 
values of the percent difference. 

to consider the concept of smoothness. It seems unrealistic to assume c ( t )  
to be as smooth as the functions fitted in model-dependent approaches, 
considering the natural oscillations in the many body functions affecting 
absorption. It is more realistic to consider c ( t )  to have a certain degree 
of fluctuation. 

The adaptive least-squares cubic spline function was chosen to estimate 
c ( t )  because it has the following properties. It is flexible enough to follow 
whatever shape c ( t )  may have (15). Due to the smoothing term (the 
second term of Eq. 13), it is not so floppy that i t  fits to the errors in the 
data, i.e., by going through all of the data points. The fit of the spline 
function in one region bears little relationship to its behavior in another 
region (15). Polynomials and other continuous mathematical functions 
that are not defined in a piecemeal fashion have just the opposite prop- 
erty. Namely, their behavior in any region determines their behavior 

DATA SET 1 

TIME 

Figure 1-Test of the new method on simulated data containing 1 % 
random error. Equation 1 (n = 2 )  is fitted to the impulse response data 
(+). An adaptive least-squares cubic spline function, s(t), is f i t ted to 
the input response data (0). The slightly sigmoid-shaped curve is the 
rate of input calculated from ai, Xi, i = I, 2and s(t) according to Eq. 15. 
The broken curve is the exact rate of input. 

everywhere. This unique and important property of the spline function 
enables it to describe the local behavior of c ( t )  with no interference from 
nonlocal data points. The spline function has a smoothness that seems 
realistic in relation to the response it attempts to describe. It is well rec- 
ognized in numerical analysis that spline functions are excellent tools 
for differentiation and integration. Therefore, a spline function repre- 
sentation should provide good estimates for the rate and the extent of 
drug input, considering the algebraic form of Eqs. 2, 5, and 6. Spline 
functions, when fitted to data by the least-squares method, conserve the 
first two moments of the data (19). This statistical property makes spline 
functions suitable for the analysis of observations with random errors 
because estimates of the mean, variance, and confidence interval of the 
true response can be obtained. 

The theoretical basis for the described properties of spline functions 

DATA SET i 

O r .  " ' I  " " ' " " ~  1 " " 

TIME 

Figure %--Test of the new method on simulated data containing 2 % 
random error. Equation 2 (n = 2) is fitted to the impulse response data 
(+). An adaptive least-squares cubic spline function, s(t), is fitted to 
the input response data (0). The continuously increasing curve is the 
amount of input calculated from ai, Xi, i = 1,2 and s(t) according to Eq. 
17. 
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Table VI-Least-Squares Unit Impulse Response Parameters Used in  the Calculation of the Input a 

Correlation 
Coefficient, 

Data Set a1 a2 A1 A2 Sum of Squares r Figure 

1 1.0427 0.97617 -5.0526 -0.97567 4.54 x 10-4 

3 1.0308 1.0487 -5.9131 -1.0262 2.18 x 10-4 
2 1.3377 0.52381 -3.1851 -0.61065 3.14 X 

4 1.3377 0.52381 -3.1851 -0.61065 3.14 X 

0.9998 1 and 2 
0.9919 

3 5 and and 4 6 0.9999 
7 and 8 0.9919 

a Determined with the FUNFIT program (18). 

Table VII-Least-Squares Parameters Obtained from Plasma Pentobarbital Data from Intravenous Administration and Used in  the 
Calculation of the Input a 

~~ ~~ 

Sum of Correlation 
a1, a2, A l p  AZ, Squares, Coefficient, 

Subject Pdml Pdml hr-' hr-l (rg/m1)2 r Figure 

R.M. 0.8014 0.5515 -1.7518 -2.391 X 7.442 X 0.9777 9 
B.G. 0.8654 0.3396 -2.203 -9.940 X 1.704 X 0.9918 9 
R.B. 0.6493 0.4222 -1.375 -1.984 X lo-' 3.34 x 10-2 0.9850 9 

a Determined with the FUNFIT program (18). 

and their relationship to their application in empirical data analysis have 
been discussed extensively (13-15,19). 

Numerical Results-The two linear systems from which the simu- 
lated data were generated will be denoted as Systems 1 and 2, corre- 
sponding to Data Sets 1 and 2 and 3 and 4, respectively. 

Both the rate and the extent of input were evaluated from the four data 
sets, giving a total of eight determinations (Figs. 1-8 and Tables II- 
V). 

System I ,  Data Set I (Noise Level 1 % )-There was no significant 
difference in the results obtained by the new method and Cutler's method 
( t  test, p = 0.95). The pattern of the errors was similar for the two 
methods. The average percent relative error was on the same order of 
magnitude as the percent error added to the data. The methods appeared 
to be least accurate in the initial stage of the input (Table I1 and Figs. 1 
and 2). 

System I, Data Set 2 (Noise Level 10% )-Raising the error level from 
1 to 10% did not differentiate between the two methods. The pattern of 
the errors again was similar, and the average percent error was of the same 
order of magnitude as the noise added to the data (Table 111 and Figs. 
3 and 4). 

System 2, Data Set  3 (Noise Level 1 % )-Although the Cutler method 
appeared to perform better in the initial stage of the input, it did not 
estimate the input as accurately as did the new method at  later sampling 
times. The difference was particularly great a t  the last sampling point. 
The new method seemed to give an overall better estimate of the input 
(Table IV and Figs. 5 and 6). 

System 2, Data Set 4 (Noise Level 10% )-The two methods did not 
seem to be significantly different in their overall accuracy when the error 

D A T A  SET 2 

h 

TIME 

Figure 3-Test of the new method on simulated data containing 10% 
random error. Equation 1 (n = 2 )  is fitted to the impulse response data 
(+). An adaptive least-squares cubic spline function, s(t), is fitted to 
the input response data (0).  The slightly sigmoid-shaped curve is the 
rate of input calculated from air Xi, i = 1,2and s(t) according to Eq. 15. 
The broken curve is the exact rate of input. 

level was raised from 1 to 10%. However, the new method appeared to 
determine the input rate more accurately at the later sampling times. The 
average percent error for the two methods was on the same order of 
magnitude as the noise level and came close to the averages obtained for 
System 1 where the same degree of noise was added to the data (Table 
V and Figs. 7 and 8). 

It is not possible to differentiate between the two methods on the basis 
of the test data. They both performed well considering that the average 
relative error in all estimations was of the same magnitude as the noise 
added to the simulated data. However, both methods appeared to un- 
derestimate the initial release rate consistently. Cutler's test problems 
could not discriminate between the two methods because the test data 
simulate rather ideal, somewhat synthetic cases. In practice, it is un- 
common to have so many points sampled in the absorption phase, and 
the sampling is rarely taken so evenly and at  the same times after intra- 
venous and oral administrations. Also, it is uncommon not to have a lag 
time in the absorption phase. 

An excessive number of simulation tests is required to establish ex- 
perimentally, using a variety of linear systems and sampling schemes, 
the relative performance of the two methods. However, the following 
theoretical considerations should give an assessment of the methods and 
how they may perform in various situations. 

Both methods use empirical functions. The Cutler method uses poly- 
nomials of various degrees to represent the input function and the unit 
impulse response. The new method uses an adaptive least-squares cubic 
spline function to represent the input response and a polyexponential 
expression (Eq. 1) to represent the impulse response. It is important to 
recognize the properties of polynomials relative to the properties of a 

D A T A  SET 2 

:o 1 

TIME 
Figure I-Test of the new method on simulated data containing 10% 
random error. Equation I (n = 2) is fitted to the impulse response data 
(+). An adaptive least-squares cubic spline function, s(t), is fitted to 
the input response data (0).  The continuously increasing curve is the 
amount of input calculated from a, Xi, i = 1,2 and s(t) according to Eq. 
17. 
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D A T A  SET 3 

TIME 
Figure 5-Test of the new method on simulated data containing 1 % 
random error. Equation 1 (n = 2) is fitted to the impulse response data 
(+). An adaptive least-squares cubic spline function, s(t), is fitted to 
the in.put response data (0).  The slightly sigmoid-shaped curve is the 
rate of input calculated from ai, Xi, i = 1,2 and s(t) according t o  Eq. 15. 
The broken curue is the exact rate of input. 

least-squares cubic spline function and a polyexponential expression since 
the differences may explain and predict how the two methods perform 
under various conditions. Least-squares polynomials usually give a good 
data representation when the data points are fairly equally spaced and 
do not change too rapidly or contain excessive errors as in the described 
simulation study. They then interpolate well but perform poorly when 
used for extrapolation beyond the end-points. The extrapolation error 
frequently increases rapidly with the distance from the end-point. Cutler 
used a polynomial to represent the impulse response (the intravenous 
bolus response). The polynomial is extrapolated from the first sampling 
time to time zero to calculate the convolution integral (p. 249, Ref. 5 )  that 
plays an essential role in his method. The chance of introducing a sub- 
stantial error in this way becomes particularly significant if early intra- 
venous data are lacking. 

It sometimes is desirable to evaluate the absorption of a drug that has 
been sampled longer than its intravenous bolus response. Inaccurate 
results may be expected using Cutler’s method in such cases because it 
requires a polynomial extrapolation beyond the last intravenous bolus 
data point to calculate the convolution integral. It is well known that 
polynomials may interpolate badly and show large oscillations between 
some data points if the data are not spaced fairly equally or contain one 
or more large gaps, due to missing data for example. The Cutler method 
is expected to be deficient when applied to such data. It is well known in 
empirical data fittings that cubic spline functions are superior to poly- 
nomials with respect to interpolation and extrapolation (20). It also is 

D A T A  SET 3 

0 1 
TIME 

Figure 6-Test of the new method on simulated data containing 1 % 
random error. Equation 1 (n = 2) is fitted to the impulse response data 
(+). An adaptive least-squares cubic spline function, s(t), is fitted to 
the input response data (0 ) .  The continuously increasing curve is the 
amount of input calculated from ai, Xi, i = I, 2 and s(t) according to Eq. 
17. 

DATP. SET 4 

TIME 
Figure 7-Test of the new method on simulated data containing 10% 
random error. Equation 1 (n = 2) is fitted to the impulse response data 
(+). An adaptive least-squares cubic spline function, s(t), is fitted to 
the input response data (0). The slightly sigmoid-shaped curve is the 
rate of input calculated from ai, Xi, i = I, 2and s(t) according to Eq. 15. 
The broken curue is the exact rate of input. 

evident that the polyexponential expression, Eq. 1, is superior to a 
polynomial for interpolation and especially for extrapolation of the in- 
travenous bolus response, considering the well-documented and suc- 
cessful use of Eq. 1 in pharmacokinetics. Therefore, the new method is 
expected to be more accurate with respect to the interpolations and the 
extrapolations that greatly influence the accuracy of the two methods. 

Cutler’s method should perform at  its best when the sampling times 
from intravenous and nonintravenous administrations coincide as in the 
test examples. This result occurs because the polynomial representation 
of the input function is best defined under this condition, due to the local 
emphasis inherent in the sum of squares expression being minimized. The 
accuracy of the new method does not depend on whether the sampling 
times coincide because of the different approach used. Most absorption 
data in pharmacokinetics contain a lag time. Cutler did not discuss how 
his method should be applied to take this factor into account. 

It seems apparent from the discussion that the test data used tend to 
give an optimistically biased evaluation of the performance of Cutler’s 
method. A differentiation of the two methods may result if more realistic 
simulation studies are performed. 

The user of Cutler’s method is faced with several different estimations 
of the input corresponding to the various degrees of the polynomial used 
in the approximations of the input rate. The problem of picking the 
“best” results is complicated by possible multiple minima of the residual 
mean square function (5). If a polynomial of too high a degree is used, it 
will fit to the errors in the data and produce unreliable results. In favor- 

D A T A  SET 4 

TIME 
Figure 8-Test of the new method on simulated data containing 10% 
random error. Equation 1 (n = 2) is fitted to the impulse response data 
(+). An adaptive least-squares cubic spline function, s(t), is fitted to 
the input response data (0). The continuously increasing curve is the 
amount of input calculated from ai, Xi, i = I, 2and s(t) according to  Eq. 
17. 
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important model-independent quantities, i.e., time to the peak, maxi- 
mum response, and area under the curve (truncated). 

Pentobarbital Input-The pentobarbital data are difficult to treat 
because the absorption phase is defined by only three or four data points 
and because the absorption lag time is not well defined due to the lack 
of early sampling points (Fig. 9). Although the lag times for the absorption 
by Subjects R.B. and B.G. (0.36 and 0.46 hr, respectively) came close, it 
was not possible to detect a significant lag time for the absorption by 
Subject R.M. due to the low information density of the data in the ab- 
sorption phase. It is satisfactory that the extent of absorption for R.M. 
and R.B. both came close to the label claim (100 and 96%, respectively) 
judged from the maximum of the percent absorbed curves (Fig. 9). 
However, the excessive value for Subject B.G. (144%) and the significant 
decline of the percent absorbed curves for all subjects indicate a pro- 
nounced violation of the assumption of time-invariant linearity between 
input and response. 

The observed discrepancy was not caused by the method of analysis 
or the numerical treatment. The rate of decline of the absorption data 
after the absorption phase was significantly larger than the rate for the 
intravenous data, indicating apparently faster elimination after the oral 
administration. Under the given assumptions, this effect will computa- 
tionally result in a negative input, ix . ,  a decline in the percent absorbed 
curve after the absorption phase as shown due to an elimination rate that 
is faster than that expected judging from the intravenous data. 

Several explanations may be investigated to explain this discrepancy 
between the oral and intravenous data. One possibility is that the linearity 
between input and response is only of a relatively short duration so that 
it changes significantly between administrations but not within the du- 
ration of a single administration. The merged intravenous bolus and input 
approach or the merged infusion and input approach (1) can be applied 
in such cases. These methods do not require a washout period between 
the intravenous and nonintravenous administrations. Therefore, the two 
administrations can be brought close together to minimize errors arising 
from a time-dependent input-response linearity. This ability should 
result in a more reliable drug input evaluation than is possible with other 
model-independent methods because these methods are based on a 
complete washout of drug between the administrations. 

The new method appears to be a potentially powerful tool for the 
evaluation of drug input and bioavailability. It is based on an exact 
mathematical solution to the deconvolution problem of linear compart- 
mental pharmacokinetics. The accuracy of the method is determined by 
how well the fitted curves represent the true response. The superimposed 
graphical representation of the estimated impulse and input responses 
and the calculated input, provided by the method (Fig. 9), consequently 
is of significant conceptual value. It enables the user to evaluate visually 
whether discrepancies or peculiarities in a calculated input are due to an 
improper data representation, judged from the fitted curves, or to the 
inherent nature of the impulse and input response data. The method is 
not used as a “black box” but enables the user to be critical about the 
results obtained and the assumptions made about the pharmacokinetics. 
Hopefully, this work will lead to a less assumptive and more objective 
approach in bioavailability testing. 
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Figure 9-Application of the new method to calculate the extent of 
input of pentobarbital in human subjects. Equation 1 (n = 2) is fitted 
to the plasma drug level data (+ ) f rom intravenous administration. An 
adaptive least-squares cubic spline function, s(t), is fitted to the oral 
absorption data (0).  The drug input (upper curves) is calculated from 
ai, Xi, i = 2 ,  2 and s(t) according to Eq. 17. 
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Abstract 0 A novel least-squares deconvolution method for estimating 
the rate and the extent of drug input into the systemic circulation is 
presented. The method is based on a polyexponential approximation of 
the impulse response and a polynomial approximation of the input rate. 
The method, which is readily implemented on a computer using any 
multiple linear regression program with a zero-intercept option, is com- 
pared to two other deconvolution methods using simulated data with 
various degrees of random noise added. It appears to have several sig- 
nificant advantages. The method is applied to plasma pentobarbital level 
data from oral and intravenous administration. The assumptions and 
limitations of deconvolution methods for analyzing drug input into the 
blood are discussed. 

Keyphrases 0 Pharmacokinetics-deconvolution method, linear 
pharmacokinetics, polyexponential impulse response, drug input into 
blood 0 Blood-drug input, deconvolution method for pharmacokinetic 
estimation Deconvolutions-pharmacokinetic estimation of drug input 
into blood Drug bioavailability-blood, deconvolution method for 
pharmacokinetic estimation 

Drug input analysis is of utmost importance in bio- 
pharmaceutics because of its fundamental role in drug 
design, evaluation, and administration. Accurate quanti- 
tation of a drug’s input-response relationship in a subject 
or patient population is, therefore, important. The relevant 
response is usually the drug concentration in the blood, in 
a certain tissue, or in an organ, but it may be a pharmaco- 
logical or toxicological response. 

The response environment is the destination for the 
input to be quantitated. There are two kinds of response 
environments: sampleable, i.e., environments that can be 
quantitatively sampled for the drug, and nonsampleable. 
The blood, a tissue, or an organ are sampleable environ- 
ments. Drug receptors and other biochemical structures 
responsible for a drug’s pharmacological-toxicological 
response are usually nonsampleable environments. A 
drug’s input can be experimentally verified only for sam- 
pleable environments. The evaluation of a drug’s input into 
a nonsampleable environment would be based on some 
hypothesis about the quantitative relationship between 
the drug concentration in the nonsampleable response 
environment and the sampleable response. Therefore, it 
is not possible to quantitate drug input from pharmaco- 
logical measurements if the input is defined with respect 

to a nonsampleable response environment, e.g., drug re- 
ceptors or “the biophase” (1). 

For only a few drugs is it possible to establish experi- 
mentally a quantitative functional relationship between 
the drug concentration in a sampleable environment (e.g., 
the blood) and the pharmacological response. In such 
cases, the pharmacological response may be used to eval- 
uate the input into the sampleable environment. The 
possibility of noninvasive, nonanalytical techniques to 
quantitate drug input from pharmacological response 
measurements is exciting (1). However, the sources of er- 
rors are enormous and generally result in very inaccurate 
results. The blood is usually not the “site of action” for a 
drug and, therefore, may not represent the ultimate des- 
tination for the drug input. However, the transfer of a drug 
to the site of action from the blood is often direct, or the 
barriers involved are often insignificant compared to the 
physical, chemical, and biological barriers the drug en- 
counters to get into the blood. Thus, it is adequate in most 
cases to evaluate the drug input with the blood as the re- 
sponse environment, as in the present approach. 

The treatment presented is limited to linear phar- 
macokinetic systems, i.e., systems where the input-re- 
sponse relationship follows the linear superposition prin- 
ciple. The classical linear compartmental systems (2, 3) 
belong to the family of linear systems. The method pre- 
sented can be characterized in the classical (linear com- 
partmental) pharmacokinetic sense as model independent. 
The various published approaches for evaluating drug 
input were discussed previously (4,5). 

THEORY 
The drug level in the blood, c * ( t ) ,  after an intravenous bolus dose, q* ,  

can often be well described by a polyexponential expression: 
n 

I = 1  
c * ( t )  = a,eXJ (Eq. 1) 

If the blood drug level behaves linearly with respect to input into the 
blood, then the unit impulse response is c * ( t ) / q * ,  and the response to an 
arbitrary input rate, f ( t  ), is given by the general expression: 

c ( t )  = 4* J f  / ( t  - u)c* (u)du 
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